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Single-particle dynamics in particle storage rings with integrable polynomial factorization maps
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A six-dimensional symplectic tracking code based on the concept of integrable polynomial factorization
(IPF) maps has been developed for the study of beam dynamics in large storage rings. To examine the accuracy
of the IPF maps, comparison studies on beam dynamics between the IPF maps and the original system have
been conducted with two sample lattices: a lattice containing one sextupole kick that is otherwise linear and the
LHC (Large Hadron Collidercollision lattice. It was found that the errors in théh-order IPF map scale as
the (n+1)th power of phase-space amplitude. As the order of the map is increased, the difference between the
original system and its IPF map can thus be reduced to be as small as desired. A study of phase-space portraits
showed that the IPF map precisely reproduces the resonance structure of the original system even in the
phase-space region where the system is quite nonlinear. The tracking study for the LHC showed that the IPF
map accurately predicts the same dynamic aperture as does element-by-element tracking. Our results suggest
that the IPF map is a reliable model for the study of long-term behavior of beam particles in large storage rings.
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PACS numbsgs): 29.20—c, 29.27-a, 05.45+b, 03.20+i

[. INTRODUCTION ated with integrable polynomial®—-11]. It is exactly sym-
plectic and can be directly used for tracking. Recently, a

In large storage rings, charged-particle beams are requiregix-dimensional tracking code based on the concept of the
to circulate for many hours in the presence of nonlinear pertPF map has been developed for the study of the long-term
turbations of multipole errors in magnets. Extensive com-behavior of beam particles in large storage rings. In this pa-
puter simulations are necessary to investigate the long-term€r a test of the IPF map on the four-dimensionahbtemap
stabilities of particle motions. To good approximation, par-and the Large Hadron CollidgtHC) collision lattice are
ticularly for hadron storage rings, the orbits of charged parfeported. Comparison studies between the IPF map and the
ticles are described by Hamiltonian flows and, therefore, #riginal system showed that the IPF map can precisely de-
symplectic tracking is required for such studies. scribe the beam dynamics. The long-term tracking study of

Over the past decade, the use of one-turn maps with thé'e LHC showed that the IPF map predicted the same dy-
aid of Lie algebra and automatic differentiati¢gifferential nNamic aperture as does element-by-element tracking.
algebra has attracted wide attention in the study of nonlinear ~ This paper is organized as follows. In Sec. Il we briefly
beam dynamics in large storage rinfds-11. Map methods recall the concept of the IPF map. The comparison study
have the advantage of substantial computational as well detween the IPF map and the original system for the cases of
conceptual simplification and could provide more realisticthe Heéon map and the LHC are reported in Secs. Il and IV,
models of actual machines than those provided by converi€spectively. Section V contains a summary.
tional methods. The major obstacle in the application of
maps to the study of the long-term stability of particle mo-
tions is, however, the construction of symplectic maps which
can not only model actual machines with desired accuracy At any “checkpoint” of an accelerator, motions of par-
but also be directly used for tracking without breaking theticles can be described mathematically by a six-dimensional
symplecticity of systems. Maps in the form of Lie transfor- symplectic one-turn map
mations with Dragt-Finn factorization, for example, are guar-
anteed to be symplectic, but they generally cannot be used
for tracking directly[4]. Truncated expansions of one-turn
maps, on the other hand, can be directly used for tracking,
but the truncation inevitably violates the symplectic nature ofwhereZ=(x,py.,y,py,Z,p,) is a phase-space vector ajd
systems and consequently leads to spurious effects if this, in general, a nonlinear functional operator. Because we
maps are used to study the long-term stab[liyy One way are usually not interested in transformations that simply
to construct a symplectic map for a storage ring is addingranslate the origin in phase space, only maps that map the
small correction terms to a truncated one-turn map so that rigin to itself (Z=0 is the closed orbjtare considered.
can be converted into a symplectic map. Methods have beé#ithin its analytic domainM can be expanded in a power
developed for the construction of such a symplectic magseries ofZ,
including the use of generating functidd,6], Cremona

II. INTEGRABLE POLYNOMIAL FACTORIZATION MAP

Z'=MZ, (]

maps(Jolt factorization, kick factorizatior{4,7,8], and inte- n
grable polynomial factorizatioiPF) maps[9—-11]. 2= U(2)+en+1), )
An IPF map is composed of Lie transformations associ- =
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whereU;(2) is a vectorial homogeneous polynomialdnof 0.10
degreei and e(n+1) represents a remainder series consist-
ing of terms higher than theth order. Truncating the expan-
sion in Eq.(2) at theNth order results in anth-order Taylor
map. Since such truncation inevitably violates the symplectic

0.05 F¢

condition, the Taylor map typically produces spurious damp- g 0.00}i
ing or growth when used to study the long-term behavior of
trajectories. In order to use a one-turn map to study the long- ~0.05 k
term stability, the Taylor map has thus to be replaced by a
symplectic map that can be easy to evaluate exactly and :
whose effect is identical to that of the Taylor map through ‘0-1_% 10 -0.05 0.00 005 0.10
some order. It has been shown that such a symplectic map ‘ ) ‘ ’ '
can be constructed, by using the method of automatic differ- X
entiation, as a product of Lie transformations in the form of
IPF[10], 0.10

n+1 [ Ng(i)

Z’=RH3 kHl exp:gi¥:)|Z+e(n+1), (3)
= =

. . . > 0.00 b §
where R denotes a linear transformation corresponding to - F

the linear betatron oscillation,g!¥: represents the Lie

operator associated with th&th integrable polynomial -0.0
i(k)(Z) of degreei, andNgy(i) is the number of integrable

polynomials of degree In the six-dimensional phase space, -0.1

Ng(i)=8, 20, 42, 0r 77 foi=3, 4, 5, or 6. Because a Lie -0.10 -0.05 0.00 0.05 0.10

transformation associated with an integrable polynomial can y

be expressed as an explicit functionof exp(g®:)Z can o

be easily evaluated exactly. Refererj€ contains the de- FIG. 1. Phase-space projection @ x-py plane and(b) y-py

tails of method for constructing integrable polynomials. Ne-Plané of four-dimensional H®n map. »,=0.2114 and v,

glecting the remainder tere(n+1) in Eq.(3), thenth-order =0.2314.

IPF map is obtained as

_ the long-term behavior of the IPF maps, we repeatedly iter-
n+1 [ Ng(0) ate the Haon map and its IPF approximations on various

Mn:RH H exq:gfk) D1 4 initial conditions and compare the phase-space plots. Figures
=8 Lkt 1 and 2 disp!ay two-dimensional projections of the phase
The fifth-order IPF map is, for example, composed of 1475Pace Of the Heon map and its fifth-order IPF map, respec-
explicit maps all of which can be iterated directly. tively, for »,=0.2114 andv,=0.2314. Comparison of Figs.

Recently we have developed a six-dimensional tracking: @1d 2 shows that within the phase-space region of interest
code(in object-oriented & +) based on the concept of IPF e difference in phase space between the IPF map and its
maps for studying beam dynamics in particle storage ringsc_)rlglnal system is invisible. To further examine the reso-
To examine the validity of the approximation involved in the N@nce structure of the IPF map, the phase-space portrait of

IPF, the accuracy of IPF maps will be studied with the fol-the horizontal motion ¥=p,=0) was plotted in Fig. 3,
lowing two sample lattices. which shows that the IPF map precisely reproduces the reso-

nance structure of the original system even in the region
where the system is quite nonlinear.
To estimate errors in the approximation of the IPF, we
The first example is a ring with one sextuple kick that iscomputed the relative error defined py]
otherwise linear. In this case, the exact one-turn map can be
written as a four-dimensional Hen map

IIl. FOUR-DIMENSIONAL HE NON MAP

Sn(2) = | MZ—MZ||1]|Z]], (6)
X' =cog 27 )X+ sin(2mvy) [ py— (X3 —Yy?)]
Px=—SiN(2mw,)x+cog 27 r,) [ py— (X*—y?)] where ||-|| denotes the Euclidean norm of the phase
M: r— i space and subscript denotes the order of the IPF map.
y'=cog 2w, )y+sin27v,) (py+ 2XY) pace . .
L Y Y In Fig. 4, 65(Z) and &5(Z) were plotted in action-
py=—sin(2mvy)y+cog2mvy)(p,+2xy), angle variables defined by  x{x.y.py)
) =(xcosp Iy %sing, I %cosp, |5 %singy). As the order of

the IPF map increases, the error is substantially reduced. To
wherev, and v, are linear tunes of the betatron oscillation. examine the dependence of the error on the order of the IPF
IPF maps of order 2 to 5 were constructed as approximationsiap and on the phase-space amplitudes, we define the maxi-
for the Henon map by using our computer code. To examinemal error at a given amplitudg=1,=1 as
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FIG. 2. Phase-space projection @ x-p, plane and(b) y-p, FIG. 3. Phas,e-space portrait of the horizontal motigr-p,
plane of the fifth-order IPF approximation of the four-dimensional =0) of (a) the Haon map andb) the fifth-order IPF approxima-
Henon map.»,=0.2114 andv,=0.2314. tion of the Heon map.»,=0.2114.
rors in the HGQ. All systematic errors as well as the dipole
Sma1)= max [8,(Z)]. () and skew quadrupole component of random field error are
(@x:dy) taken to be zero. The random multipole components up to

) _ _ the fifth order are included and chosen with Gaussian distri-
In Figs. 5 and 65,y is plotted as a function of andn,  pytions centered at zero and truncated-@c, or +3a,
respectively. The error in the IPF map is found to increase, . oo ando. are the rms value of thleth-onrder normr:ell
with the phase-space amplitu@iee Fig. $but such increase by ~@n . ) )
d skew multipole coefficient, respectively. In this study we

can be suppressed by increasing the order of the IPF m ; :
(see Fig. ﬁp|pn the inse)t/ of Fig. 5, ?OQ)((Smax) is plotted as a eﬁged the error table of the Fermilab design of the HG&.

function of logy(l), which shows a power-law dependenceThe magnetic field errors in each HGQ are represented by a

of 8. on |. From the slopes of 1ag(8,.)-logy(1) plots set of thin-lens multipole kicks, in which each magnet is

) ) sliced. In this study we used seven kicks in each HGQ in-
we found thatdpa, of the nth-order IPF map is proportional  o,,4ing kicks at bo%/h ends. In order to minimize beam-beam

to I", which indicates that the difference between the exackffects, two counter-rotating beams of the LHC cross with a
system and itsith-order IPF map scales 4&||""*. Within  small angle at interaction points. In this study we used a
the phase-space region of interest, the difference between ”&?ossing angle of 30Qurad which is an optimized value
original system and its IPF approximation can therefore beyhen both beam-beam effects and triplet field errors are
reduced as small as desired. taken into accouritl4]. Because of the beam separation, the
It should be noted that even though all data discussed heigigher-order field errors in HGQ feed down to lower orders.
are from the case of,=0.2114 andv,=0.2314, other cases Even though the skew quadrupole component of the field
of different linear tunes were also studied and the resulterror in HGQ is not included, the linear coupling as well as

were found to be similar. tune shifts exist if there is no linear correction in the ring. In
the test lattice we used twelve normal quadrupoles and eight
IV. THE LHC COLLISION LATTICE skew quadrupoles in eight outer triplets of the LHC to tune

and to match the lattice functions, and to achieve a full de-

The Large Hadron Collider to be built at CERN has four coupling at two high luminosity IRs. All insertions are per-
interaction regiongIRs) of which two are high luminosity fectly matched to the arc sections. The fractional parts of
IRs (8*=0.5 m) [12]. During collisions, the beam dynam- horizontal and vertical tunes aig=0.31 andv,=0.32, re-
ics is dominated by the field errors of high gradient quadruspectively.
poles(HGQ) of inner triplets in the IRs because of large The fifth-order IPF map was constructed from the fifth-
functions (Bma—4700 m) and the beam separation in theorder one-turn Taylor map of the LHC at the high luminosity
triplets. In this study we only consider the random field er-interaction point. To test the IPF map, the dynamic aperture
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FIG. 4. Accuracy of(a) the second-order IPF map afo) the
fifth-order IPF map of the four-dimensional hen map.¢, and by
are phase-space angle variables gpel,=0.1. »,=0.2114 and
vy=0.2314.
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FIG. 5. The maximal relative erraf,,,, of the IPF approxima-
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FIG. 6. The maximal relative erra¥,,, of the IPF approxima-
tion of the four-dimensional Hen map is plotted as a function of
the order of the IPF map. The number on each curve indicates
phase-space amplitudg=1,=1. »,=0.2114 andv,=0.2314.

was calculated with Toturn tracking by using both the IPF
map and element-by-element tracking. Tracking of particle
motions has been done without synchrotron oscillations and
momentum deviations. To improve the statistical signifi-
cance of the simulations, we have used 50 different samples
of random multiple components generated with different
seed numbers in a random number generator routine.
Figure 7 plots the dynamic apertu(BA) calculated by
using the fifth-order IPF map versus DA calculated by
element-by-element tracking for 50 random samples, which
shows a very good agreement between these two methods.
With element-by-element tracking, the smallest and average
DA of the 50 samples are found to be #.2and 14.7,
respectively, wherar is the transverse beam size. At the
high luminosity interaction pointgr=15.9 um[13]. On the
other hand, the smallest and average DA obtained by using
the IPF map are 7&%and 15.3, respectively. The IPF map,
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FIG. 7. The dynamic apertuf®A (IPF)] of 50 random samples
of the LHC collision lattice calculated by using the fifth-order IPF

tion of the four-dimensional Hen map is plotted as a function of map vs the dynamic apertufBA (ele)] calculated by element-by-
phase-space amplitude The number on each curve indicates the element tracking. The tracking turn is ®10 »,=0.31 and vy

order of the IPF map. The inset plots {g@%n.0 a@s a function of
logy(l).  »,=0.2114 andv,=0.2314.

=0.32. The unit of the dynamic aperture is the transverse beam size
ag.
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FIG. 8. Projection of normalized phase space(@nx-p, plane FIG. 9. Projection of normalized phase space(@mnx-p, plane
and(b) y-py plane of a typical random sample of the LHC collision and (b) y-p, plane of the fifth-order IPF map for the same case in
lattice at the high luminosity interaction point,=0.31 andv, Fig. 8.
=0.32.

nth-order IPF map at a given phase-space amplitude is found

therefore, accurately predicts the dynamic aperture. to be proportional to then(+1)th power of the phase-space
To compare the detail of the phase space between the IRimplitude. Over the phase-space region of interest, a sym-
map and the element-by-element tracking, we have also exlectic system can therefore be approximated by an IPF map
amined the difference in phase-space plots and calculated thth the desired accuracy. We have also examined the phase-

errors in the IPF map by using Eq®) and (7). Figures 8  space topology of the IPF maps by repeatedly applying the
and 9 plot the two-dimensional projections of the phase

space of the LHC by using element-by-element tracking and 102¢ T — T
by using the fifth-order IPF map, respectively, for a typical v =0.31
random sample. Comparison of Figs. 8 and 9 shows very 103 "_0 3
little difference in the phase-space region of interest between e
the original system and its IPF map. In Fig. 10 the maximal w4l
relative error at a given phase-space amplitédg, of the
same sample is plotted as a functionlpfvhich shows that o
the difference between the original system and its IPF ap- _ & 10°F
proximation is very insignificant. “w
106 F
V. SUMMARY
107
For a nonlinear system, a valid symplectic-map approxi-
mation should contain a similar long-term behavior to that of . ) S . ,
the original system over the phase-space region of interest. In %0 0.2 0.4 0.6 0.8 1.0
order to investigate such “accuracy” of the IPF map, a com- I (10-8 m)
parison study of the long-term behavior has been conducted
with two examples: a four-dimensional hen map of which FIG. 10. The maximal relative erraf,,, of the fifth-order IPF

the IPF maps were constructed as approximations and th@iap is plotted as a function of phase-space amplityeid =1 for
LHC collision lattice of which the IPF map was comparedthe LHC collision lattice at the high luminosity interaction point.
with element-by-element tracking. The maximal error of ther,=0.31 andv,=0.32.
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maps to various initial conditions. It was found that the IPFresonances, trajectories of the IPF map become highly un-
maps retain a similar resonance structure and have similatable. Of systems we studied, those resonances are far away
long-term behavior of the original system even in regionsfrom the phase-space region of interest. It is, however, nec-
where the maps are quite nonlinear. Thé-fin tracking essary to have a thorough understanding of any correlation
study has been conducted for the LHC collision lattice bybetween the resonances in the factorization bases and the
using both the fifth-order IPF map and element-by-elementesonances of the original system in order to understand any
tracking. The IPF map accurately predicts the same dynamiimitation of the IPF map. Such an understanding of the reso-
aperture as does element-by-element tracking. Our studyances could also enable one to use the map to easily get an
suggests that the IPF map is a reliable model for the study dflea of which resonances in the original system are poten-
the long-term behavior of beam particles in large storagdially problematic for the stability of particle motion.
rings.

One remaining question for t_he app!|cat_|on of the IPF ACKNOWLEDGMENTS
map is the significance of the singularities in the IPF map
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